ENZYME-DEGRADABLE POLY(2-OXAZOLINE)-BASED DRUG DEPOTS

Klaus P. Luef^{a.b}, Charlotte Petit^c, Bettina Ottersböck^a, Gernot Oreski^a, Bruno Grassl^c, Stephanie Reynaud^c, and <u>Frank Wiesbrock^a</u>

 ^a Polymer Competence Center Leoben, Roseggerstrasse 12, 8700 Leoben, Austria
^b Institute for Chemistry and Technology of Materials, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010 Graz
^c IPREM, Université de Pau et des Pays de l'Adour, 2 Avenue du Président Angot, 64053 Pau CEDEX 09, France

The thiol-ene reaction is one of the most extensively investigated examples of the socalled click reactions and can be used for the crosslinking reaction of copoly(2oxazoline)s containing C=C double bonds in their side-chains.[1] Such crosslinked poly(2-oxazoline)s can be used in biomedical applications such as cell adhesion and drug delivery.[2] Using mercapto crosslinkers that additionally contain ester bonds, polymer networks are obtained that can be degraded upon stimuli such as pH changes or the addition of enzymes.

If such poly(2-oxazoline)-based networks are synthesized from the polymeranalogous thiol-ene crosslinking reaction of dedicatedly functionalized copoly(2-oxazoline)s with glycol dimercaptoacetate, the straightforward loading of the gels with APIs present in the reaction mixture is enabled. Numerous of such gels composed of 2-ethyl- and 2-nonyl-2-oxazoline as well as 2-but-3'-enyl- and 2-dec-9'-enyl-2-oxazoline exhibit glass-transition temperatures in the range from 20 to 30 °C, which renders them stiff below and flexible at body temperature. Gels that do not contain any repetition units of 2-nonyl-2-oxazoline are hydrogels. Maximum swelling degrees of 6 in water can be observed. All other gels act as lipo- or amphigels. The degradation of the networks and concomitant release of the occluded molecules with rabbit liver esterase at pH = 8 was found to proceed very comparable with the enzyme-free degradation at pH = 10. Highest release rates were found for the degradation of the networks by porcine liver esterase at pH = 8. [3]

^[1] Petit, C., Luef, K. P., Edler, M., Griesser, T., Kremsner, J. M., Stadler, A., Grassl, B., Reynaud, S. & Wiesbrock, F.: *ChemSusChem* 8, 2015, 3401-3404.

^[2] Schenk, V., Rossegger, E., Ebner, C., Bangerl, F., Reichmann, K., Hoffmann, B., Höpfner, M. & Wiesbrock, F.: *Polymers* 6, 2014, 264-279.

^[3] Luef, K. P., Petit, C., Ottersböck, B., Oreski, G., Ehrenfeld, F., Grassl, B., Reynaud, S. & Wiesbrock, F.: *European Polymer Journal* 88, 2017, 701-711.