DISLOCATIONS AND MOLECULAR RELAXATIONS IN IPP

<u>Florian Spieckermann</u>^a, Gerald Polt^b, Harald Wilhelm^{b,c}, Michael B. Kerber^b, Erhard Schafler^b, Marius Reinecker^d, Viktor Soprunyuk^d, Sigrid Bernstorff^e, Michael Zehetbauer^b

^aDepartment for Material Physics,Montanuniversität Leoben , Jahnstrasse 12, 8700 Leoben, Austria ^bResearch Group Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, Wien, Austria ^cLaboratory of Polymer Engineering LKT-TGM, Wexstrasse 19-23, 1200 Wien, Austria ^dResearch Group Physics of Physics of Functional Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, Wien, Austria ^eSincrotrone Trieste, Strada Statale 14 km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy

Crystallographic slip is a basic deformation mechanism in polymer crystals, operating over a wide range of strain levels guided by a dislocation based deformation mechanism. In the present work, the thermal stability of deformation induced dislocations is investigated. In-situ X-ray diffraction experiments during stepwise annealing of pre-deformed alpha-phase Polypropylene samples were performed. The diffraction patterns were analyzed by the Multi reflection X-ray Profile Analysis (MXPA) method, which allows for determining the presence and density of dislocations and the lamellae thickness. The hereby obtained development of the dislocation density as a function of annealing temperature allows for an identification of critical temperatures at which dislocations are being mobilized in alpha-iPP. By combining MXPA with dynamic dynamical mechanical analysis measurements (DMA), it is possible to attribute the thermal stability of dislocations to relaxation processes within the crystalline and the amorphous phase.