MOLECULAR DESIGN OF INTERFACIAL LAYERS BASED ON CONJUGATED POLYTHIOPHENES FOR POLYMER SOLAR CELLS

Sébastien Clément

Institut Charles Gerhardt, University of Montpellier, 34095 Montpellier, France

In the past two decades, bulk heterojunction-organic photovoltaic devices (BHJ-OPVs) have emerged as attractive candidates for solar energy conversion due to their light-weight design and potential for low-cost high-throughput, solution-phase processibility. Interfacial engineering is a proven efficient approach to achieve OPVs with high power conversion efficiencies (PCEs). In this respect, conjugated polyelectrolytes (CPEs) (polymers with an extended π -conjugated backbone and ionic pendant groups) have emerged as promising materials for boosting the I-V characteristics of organic photovoltaics.[1,2] Nevertheless, clear guidelines with respect to the structure of high-performance interlayers are still lacking. Herein, we will describe the synthesis of polythiophene-based CPEs bearing different ionic side groups, counterions and having different topographies (homo- and block copolymers) aiming to elucidate the underlying mechanism for improved performance (Fig. 1).[3,4] We will outline how CPEs should be designed to optimize OPV device performance.

Fig. 1: Chemical structure of some polythiophene-based interfacial layer materials for OPVs.

^[1] He, Z., Wu, H., Cao, Y., Adv. Mater. 2014, 26, 1006-1024

^[2] Houston, J. E., Richeter, S. Clément, S., Evans, R. C., Polym. Int. 2017, Accepted.

^[3] Chevrier, M., Houston, J. E., Kesters, J., Van den Brande, N., Terry, A. E., Richeter, S., Mehdi, A., Coulembier, O., Dubois, P., Lazzaroni, R., Van Mele, B., Maes, W., Evans, R. C., Clément, S., *J. Mater. Chem. A* **2015**, *3*, 23905-23916.

^[4] Kesters, J.; Govaerts, S., Pirotte, G., Drijkoningen, J., Chevrier, M., Van den Brande, N., Liu, X., Fahlman, M., Van Mele, B., Lutsen, L., Vanderzande, D., Manca, J., Clément, S., Von Hauff, E., Maes, W., *ACS Appl. Mater. Interfaces* **2016**, *8*, 6309-6314.