CO-CATALYST EFFECTS IN ZIEGLER-NATTA ETHYLENE POLYMERIZATION

Christian Paulik, Paul Aigner

Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Austria

Polyolefines dominate the plastics market due to their price and performance and Ziegler-Natta (ZN) catalysts are among the most important types of catalyst systems for the industrial production of this class of materials. The main components of ZN catalysts are a titanium compound in combination with an organic aluminum cocatalyst [1]. This aluminum compound is one of the most decisive factors in the polymerization of ZN catalysts [2]. Therefore a systematic study was carried out to determine the influence of different aluminum alkyls on the homo-polymerization of ethylene with a ZN catalyst system.

The tested cocatalysts showed different polymerization activities, with each aluminum alkyl exhibiting a particular behavior. When comparing all alkyls, there is an activity drop for steric hindered alkyls. For increasing aluminum alkyl concentration, more bulky Al alkyls reached a plateau whereas tri-ethyl-aluminum led to a peak activity followed by a decrease. Based on the experimental findings a model was created to simulate for the concentration of the aluminum alkyl and its steric conditions.

^[1] D. Jeremic, "Polyethylene", in Ullmann's Encyclopedia of Industrial Chemistry, M. Bohnet, Ed. 6th ed., Weinheim, Germany: Wiley-VCH, 2003, pp. 1-42.

^[2] H. Fuhrmann and B. Strübing, "Studies on the polymerization of ethylene using a high-yield MgCl₂supported titanium catalyst, 3. Chemical composition of the standard system and its alterations", Macromol. Chem. Phys. Vol. 195, No. 1, pp. 229-241, 1994.